Synthesis and application of ligands for the asymmetric addition of organolithium reagents to imines

C atrin A. J ones, I wan G. J ones, M ushtaq M ulla, M ichael N orth* \dagger and Lucia Sartori
Department of Chemistry, University of Wales, Bangor, Gwynedd, UK LL57 2U W

Abstract

A mino acid derived ligands 4d,e are prepared from (S)-valine and (S)-proline respectively, and can be used as chiral ligands during the asymmetric addition of organolithium reagents to N -arylimines. Ligand 4 e, which is prepared by two independent routes, is found to induce addition of organolithium reagents to the si-face of the imines, whilst ligand 4d in common with the previously reported catalysts 4a-c induces addition to the re-face of the imines.

Introduction

In recent years, considerable progress has been made in the asymmetric addition of carbon nucleophiles to prochiral carbonyl compounds under the influence of a chiral catalyst. In particular, the asymmetric catalysis of the addition of cyanide ${ }^{1}$ (from hydrogen cyanide or trimethylsilyl cyanide) and the addition of organozinc reagents ${ }^{2}$ to aldehydes and ketones have both been achieved with excellent asymmetric induction. By comparison, the asymmetric addition of carbon nucleophiles to prochiral imines leading to optically active amines is a field which is still in its infancy. ${ }^{3} \mathrm{~A}$ number of chiral auxiliary based approaches have been reported, ${ }^{4}$ but reports of asymmetric catalysts for this reaction are scarce. Compared to additions to carbonyl compounds, a number of additional factors need to be considered in the asymmetric addition of nucleophiles to prochiral imines. These include the lower electrophilicity of the carbon-nitrogen double bond compared to the carbonyl bond, the electronic and steric nature of the substituent on the nitrogen atom, and the possibility of E, Z-isomerism about the carbon-nitrogen double bond. The first of these factors can be an advantage, as the uncatalysed addition of nucleophiles to an imine will be retarded, but the second two points are complications.

Very recently, the first report of a catalytic, asymmetric Strecker reaction (addition of HCN to an imine) was reported, ${ }^{5}$ and there are a handful of reports of catalysts for the addition of organolithium reagents to imines and their derivatives. In particular, sparteine ${ }^{6,7}$ 1, bis-oxazolines ${ }^{6}$ 2, 0,0 'dialkyldihydrobenzoins ${ }^{8,9} 3$ and amino ethers ${ }^{8-10} 4,5$ have been employed as chiral catalysts and/or chiral ligands for this reaction. It is notable that structures 1-5 include both bi- and tri-

1

2

3

4

5
dentate ligands, with examples of good and not so good asymmetric induction being reported in both cases. The catalytic, asymmetric addition of organometallic reagents to N heteroatom substituted imines ${ }^{7,11}$ and to nitrones ${ }^{12}$ has also been reported.
A n attractive feature of this chemistry is the large number of natural products which contain a stereocentre adjacent to an amino group, and in particular by the ease with which enantiomerically pure allylic amines can be converted into α-amino acids, α-amino aldehydes, β-amino acids, β-lactams and β amino alcohols (Scheme 1). However, catalysts 1-5 all suffer

Scheme 1
from one or more disadvantages as chiral catalysts, these include the availability of only one enantiomer, low levels of asymmetric induction, the need to use stoichiometric or greater amounts of the chiral species, and narrow substrate specificity. Thus, a research programme aimed at the development of more versatile catalysts for the asymmetric addition of organolithium reagents to imines was initiated within our group. In this paper, we report details of our results on the design of ligands analogous to compounds 4 for the asymmetric addition of organolithium reagents to α, β-unsaturated imines. ${ }^{13}$

Synthesis of chiral ligands

Of the chiral ligands 1-5, those represented by structure 4 appeared to be a suitable starting point for our work. These ligands are readily prepared from (S)-amino acids and offer great scope for variation during optimisation studies. Three such catalysts 4a-c have previously been reported, ${ }^{8-10}$ each of which induces theaddition of an organolithium reagent (methyllithium, butyllithium or vinyllithium) to the re-face of an N (p -methoxyphenyl)imine as shown in Scheme 2. Ligands 4a-c

$\mathrm{R}=\mathrm{Me}, \mathrm{Bu}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}$
$\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{PhCH}=\mathrm{CH}, 1-\mathrm{Naph}, 2-\mathrm{Naph}$

Scheme 2

have been investigated in both stoichiometric (2.6 equiv.) and catalytic (0.05-0.3 equiv.) quantities, with higher enantiomeric excesses being obtained in the former case ($42-77 \%$ versus 25 64\%).

We decided to investigate the effect of further variation in the structure of the ligands, and chose to prepare ligands 4d derived from (S)-valine, and $\mathbf{4 e}$ derived from (S)-proline. Ligand $\mathbf{4 d}$ offered the opportunity to investigate the effect of steric influences on the activity of the catalyst, whilst ligand 4 e being derived from a cyclic, secondary amino acid was anticipated to have fewer available conformations.

The synthesis of ligands $4 d, e$ was initially achieved from the corresponding amino acids using the route previously reported for ligands 4a, $\mathbf{c}^{9,14}$ as shown in Scheme 3. Thus reaction of (S)-

Scheme 3 Reagents: i, $\mathrm{NaBH}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}$; ii, $\mathrm{H}_{2} \mathrm{CO}, \mathrm{HCOOH}$; iii, SOCl_{2}; iv, $0-(\mathrm{M} \mathrm{CO}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}, \mathrm{NaH}$
valine $\mathbf{6 a}$ or (S)-proline $\mathbf{6} \mathbf{b}$ with sodium borohydride-conc. sulfuric acid ${ }^{15}$ gave the corresponding amino alcohols $7 a, b . N, N-$ Dimethylation of 7 a and N-methylation of $\mathbf{7 b}$ was achieved by treatment with formaldehyde and formic acid to give N methylamino alcohols $\mathbf{8 a}, \mathbf{b}$. ${ }^{14}$ C hlorination of $\mathbf{8 a}, \mathbf{b}$ with thionyl chloride gave alkyl chlorides 9a,b, which reacted with 0 methoxyphenol in the presence of sodium hydride to give the desired ligands 4d,e in overall yields of 19 and 45% from the commercially available amino alcohols respectively.

The spectral data for catalyst 4d were entirely consistent with the proposed structure. For amino ether 4 e however, the ${ }^{1} \mathrm{H}$ NM R spectrum showed two singlets at 2.7 and 2.9 ppm corresponding to the N -methyl signal, and in the ${ }^{13} \mathrm{C} N \mathrm{M}$ R spectrum [Fig. 1(b)] twice the expected number of resonances were observed. These extra peaks could have been due either to the presence of an impurity in the product, or to compound $\mathbf{4 e}$ existing as two conformers interconverting slowly on the N M R

Fig. $1{ }^{13} \mathrm{C}$ NMR spectra of a mixture of compounds $4 e$ and 11 recorded at $+55^{\circ} \mathrm{C}$ (a), $+20^{\circ} \mathrm{C}$ (b) and $-50^{\circ} \mathrm{C}$ (c)
timescale. The former possibility appeared quite likely, since the final step of the synthesis will proceed via the aziridinium salt 10 as shown in Scheme 4. Ring opening of the aziridinium ring

of compound 10 could occur at two sites, leading to compounds 4 e and 11 respectively. A variable temperature ${ }^{13} \mathrm{C}$ NM R study [-50 to $+55^{\circ} \mathrm{C}$ Fig. 1(a)- (c)] showed that both the intensities and the chemical shifts of the ${ }^{13} \mathrm{C}$ resonances were temperature dependent. The changes in intensity of the peaks are quite noticeable in Fig. 1, and the largest change in chemical shift (2.0 ppm) is seen for the resonance corresponding to the $\mathrm{CH}_{2} \mathrm{O}$, which occurs at 70.6 ppm at $-50^{\circ} \mathrm{C}$ but at 72.6 ppm at $+50^{\circ} \mathrm{C}$. This information strongly suggested that the appearance of multiple peaks in the NMR spectra of compound 4 e was due to the presence of two rotamers, as did the fact that capilliary GC analysis of compound 4 e gave a single peak.
To further investigate the possible presence of compound 11, an alterative synthesis of catalyst $\mathbf{4 e}$ was developed as shown in Scheme 5 . Thus reduction of N -benzyloxycarbonylproline gave N-benzyloxycarbonylprolinol 12, which could also be prepared by protection of amino alcohol 7b. Reaction of alcohol $\mathbf{1 2}$ with thionyl chloride gave the chloropyrrolidine 13, but this compound proved to be completely inert to substitution reactions under a range of reaction conditions. A Iternatively, reaction of alcohol $\mathbf{1 2}$ with methanesulfonyl chloride gave the corresponding methenesulfonate $\mathbf{1 4}$ which did react with 0-methoxyphenol in the presence of potassium tert-butoxide to give pyrrolidine 15. It was expected that the presence of a benzyloxycarbonyl-

Scheme 5 Reagents: i, $\mathrm{NaBH}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{ii}, \mathrm{SOCl}_{2} ;$ iii, $\mathrm{M} \mathrm{sCl}, \mathrm{Et}_{3} \mathrm{~N}$; iv, $0-(\mathrm{MeO}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}, \mathrm{KOCMe}_{3} ; \mathrm{v}$, $\mathrm{LiAlH}_{4} ;$ vi, ZONSu (Ms= MeSO_{2} $Z=P h C H_{2} \mathrm{OCO} ; \mathrm{Su}=$ succinimide)
protecting group on the pyrrolidine nitrogen would prevent the lone pair of electrons on nitrogen from being involved in this substitution reaction, and hence prevent the formation of rearranged products. Finally, reduction of compound $\mathbf{1 5}$ with lithium aluminium hydride again gave catalyst $\mathbf{4 e}$, though in this case only a single set of peaks were seen in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the catalyst. This synthesis thus proved that the literature approach to catalysts $4 a-d$ proceeds with approximately 30% rearrangement to compound 11 when applied to catalyst 4 e . The reason why the relative intensities and chemical shifts of the ${ }^{13} \mathrm{C}$ NMR signals of a mixture of compounds 4 e and 11 should be temperature dependent is not clear, but may be due to changes in the relaxation times, or to the formation of aggregates.

A symmetric synthesis of amines

To test the catalytic activity of ligands $\mathbf{4 d}, \mathrm{e}$, the addition of M eL i, BuLi and PhLi to imines $\mathbf{1 6 a , b}$ was investigated as shown in Scheme 6, the results being presented in Table 1. It was found necessary to use toluene as a non-coordinating solvent, since in diethyl ether or THF much lower enantiomeric excesses were obtained. Under these reaction conditions, no addition of organolithium reagent to the imine occurred in the absence of ligands $\mathbf{4 d}, \mathrm{e}$. The enantiomeric excess of the amines 17a-e were determined by reaction with (S)-1-phenylethyl isocyanate to give ureas 18a-e. The diastereomeric excesses of the ureas could conveniently be determined by integration of the ${ }^{1} \mathrm{H}$ NMR spectra, or by HPLC analysis. For each of amines 17a-e, the corresponding racemic amine was also prepared (from imines $16 a, b$ omitting the chiral ligand $4 d, e$ and conducting the reac-

$$
\begin{aligned}
& R^{1}=\mathrm{Me}, \mathrm{Bu} \text { or Ph 16a } \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{Ph} \\
& \text { 16b } \mathrm{R}^{2}=\mathrm{PhCH}=\mathrm{CH} \\
& \mathrm{R}^{3}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \\
& \text { 4d, } \\
& \text { 17a-e } \\
& \text { 18a-e } \\
& \text { 17,18 a } \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Ph} \\
& \text { b } \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Ph} \\
& \text { c } \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{PhCH}=\mathrm{CH}, \mathrm{R}^{3}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \\
& \text { d } \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{PhCH}=\mathrm{CH}, \mathrm{R}^{3}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \\
& \text { e } \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{PhCH}=\mathrm{CH}, \mathrm{R}^{3}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}
\end{aligned}
$$

Scheme 6
tions at room temperature), and converted into the corresponding urea by reaction with (S)-1-phenylethyl isocyanate to provide a reference sample for diastereomeric excess determinations. In each case, the amine was also prepared using ligand $4 a,{ }^{8-10}$ so that the relative senses of asymmetric induction could be determined.
From the results given in Table 1, it can be seen that the presence of compound $\mathbf{1 1}$ has no effect upon the catalytic activity observed with catalyst 4 e . Thus comparison of entries 3,4 and 10 with entries 12,13 and 14 shows no significant differences. Interestingly however, the use of catalyst $\mathbf{4 e}$ gave the opposite enantiomer (arising from addition of the organolithium reagent to the si-face of the imine) of amines 17 to that obtained using catalyst 4a, despite the fact that both catalysts are derived from an (S)-amino acid. The magnitude of the enantiomeric excesses are however lower using catalyst $4 \mathbf{e}$ than those reported for catalyst 4a. Ligand 4d however, was found to preferentially produce the same enantiomer of amines 17 as ligand 4a, though again with a lower enantiomeric excess.

C onclusions

The synthesis of two new ligands (4d and 4e) for the asymmetric addition of organolithium reagents to imines has been achieved. The synthesis of ligand $\mathbf{4 e}$ by the standard procedure reported for similar ligands was found to produce approximately 30% of compound 11 as an inseparable by-product obtained due to neighbouring group participation in the final

Table 1 A ddition of organolithium reagents to imines induced by ligands 4d,e

Entry	Ligand (\%)	R^{1}	R^{2}	R^{3}	Y ield (\%)	ee (\%)	Configuration
1	4d (20)	Me	$\mathrm{PhCH}=\mathrm{CH}$	4-M eOC66 H_{4}	56	12	R
2	4d (20)	Bu	$\mathrm{PhCH}=\mathrm{CH}$	4-M eOC ${ }_{6} \mathrm{H}_{4}$	33	20	a
3	4e (25)	Me	$\mathrm{PhCH}=\mathrm{CH}$	$4-\mathrm{MeOC} 6_{6} \mathrm{H}_{4}$	42	10	S
4	4 e (100)	Me	$\mathrm{PhCH}=\mathrm{CH}$	$4-\mathrm{MeOC} 6_{4}$	60	20	S
5	4e (200)	Me	$\mathrm{PhCH}=\mathrm{CH}$	$4-\mathrm{MeOC} 6_{6} \mathrm{H}^{4}$	42	21	S
6	4e (25)	Bu	$\mathrm{PhCH}=\mathrm{CH}$	$4-\mathrm{MeOC} \mathrm{C}_{4}$	50	12	b
7	4e (100)	Bu	$\mathrm{PhCH}=\mathrm{CH}$	$4-\mathrm{MeOC} 6_{4}$	40	5.5	b
8	4e (200)	Bu	$\mathrm{PhCH}=\mathrm{CH}$	$4-\mathrm{MeOC} 6_{4}$	37	1.5	b
9	4e (25)	Ph	$\mathrm{PhCH}=\mathrm{CH}$	4-M eOC ${ }_{6} \mathrm{H}_{4}$	51	13	c
10	4e (25)	Me	Ph	Ph	96	10	S
11	4 e (25)	Bu	Ph	Ph	44	5.5	C
12	$4 \mathrm{e}^{\text {d }}$ (25)	Me	$\mathrm{PhCH}=\mathrm{CH}$	4-M eOC ${ }_{6} \mathrm{H}_{4}$	57	9	S
13	$4 e^{\text {d }}$ (100)	Me	$\mathrm{PhCH}=\mathrm{CH}$	4-M eOC ${ }_{6} \mathrm{H}_{4}$	78	25	S
14	$4 \mathrm{e}^{\text {d }}$ (25)	Me	Ph	Ph	78	7.5	S

[^0]$\mathrm{S}_{\mathrm{N}} 2$ displacement reaction. An alternative synthesis of ligand $4 e$ circumventing this problem has been developed. Both ligands were found to be effective catalysts for the asymmetric addition of organolithium reagents to imines, and preferentially produced opposite enantiomers of the resulting amines though with relatively low enantiomeric excesses. The presence of compound 11 in the reaction mixture was shown to have no effect upon the catalytic activity of ligand $\mathbf{4 e}$.

At this stage, the reason for the difference in asymmetric induction observed using ligands 4 d and $\mathbf{4 e}$ is not clear. Both catalysts are likely to be tridentate, however it appears that the conformationally constrained pyrrolidine ring of ligand $\mathbf{4 e}$ occupies different space to the acyclic amino acid sidechains. This difference in occupied space around the lithium ion may well be the cause of the reversal of sense of asymmetric induction, as it may alter the way in which the organolithium reagent-chiral ligand complex and imine interact. A ny more detailed proposal would be unduly speculative in the absence of information on the structure of the organolithium-ligand complexes. Our work in this area is continuing, focusing on the synthesis of new ligands related to compounds 4, but capable of producing amines with higher enantiomeric excesses. This work will be reported in due course.

Experimental

${ }^{1} \mathrm{H}$ NMR spectra were recorded at 250 MHz on a Brucker A M 250 spectrometer fitted with a ${ }^{1} \mathrm{H}-{ }^{-13} \mathrm{C}$ dual probe, and were recorded at 293 K in CDCl_{3} unless otherwise stated. Spectra were internally referenced either to TM S or to the residual solvent peak, and peaks are reported in ppm downfield of TM S M ultiplicities are reported as singlet (s), doublet (d), triplet (t), quartet (q), some combination of these, broad (br) or multiplet (m). J Values are given in Hz . ${ }^{13} \mathrm{C}$ N M R spectra were recorded at 62.5 M Hz on the same spectrometer as ${ }^{1} \mathrm{H} \mathrm{NM}$ R spectra, at 293 K and in CDCl_{3} unless otherwise stated. Spectra were referenced to the solvent peak, and are reported in ppm downfield of TM S. Peak assignments were made by DEPT editing of the spectra. Infrared spectra were recorded on a Perkin Elmer 1600 series FTIR spectrometer, only characteristic absorptions are reported, and peaks are reported as strong (s), moderate (m), weak (w) or broad (br). M ass spectra were recorded using the FA B technique (Cs^{+}ion bombardment at 25 kV) on a VG Autospec spectrometer, or by chemical ionisation (CI) with ammonia on either a VG model 12-253 quadrupole spectrometer or a VG Quattro II triple quadrupole spectrometer. Only significant fragment ions are reported, and only molecular ions are assigned. H igh resolution mass measurements were made on a VG ZA B-E spectrometer. Optical rotations ($[a]_{\mathrm{D}}$) were recorded on an Optical Activity Ltd. Polar 2001 polarimeter, and are reported in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$ along with the solvent and concentration in g per 100 ml . M elting points are uncorrected. Elemental analyses were performed within the Chemistry department on a Carolo Erba M odel 1106 or M odel 1108 analyser.

A nalytical H PLC was carried out on a Waters H PLC system using a Regis R,R WHELKO-1 chiral stationary phase and detection by UV absorption at 254 nm . A solvent system of isopropyl alcohol (IPA)-hexane at a flow rate of $2.0 \mathrm{ml} \mathrm{min}^{-1}$ was used. Flash chromatography ${ }^{16}$ was carried out on 40-60 $\mu \mathrm{m}$ mesh silica, thin layer chromatography was carried out on aluminium backed silica plates (0.25 mm depth of silica containing UV254), and the plates were visualised with UV light, and/or dodecaphosphomolybdic acid as appropriate.

All yields refer to isolated, purified material, and are unoptimised. THF and diethyl ether were dried by distillation from sodium immediately prior to use Toluene was dried over sodium wire. Other solvents were used as supplied. Ether refers to diethyl ether. Petrol refers to the fraction of light petroleum with bp $40-60^{\circ} \mathrm{C}$.

(2S)-1-(0-M ethoxyphenoxy)-2-dimethylamino-3-methylbutane

 4do-M ethoxyphenol ($16.0 \mathrm{~g}, 0.13 \mathrm{~mol}$) was added to a suspension of $\mathrm{NaH}(3.0 \mathrm{~g}, 0.125 \mathrm{~mol})$ in D M F $(20 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 40 min , then a solution of (2S)-1-chloro-2-dimethylamino-3-methylbutane hydrochloride ${ }^{17} 9 \mathrm{a}(4.9 \mathrm{~g}, 0.033 \mathrm{~mol})$ in D M F (165 ml) was added. The mixture was stirred at room temperature for 24 h , then concentrated to approximately 30 ml , diluted with water (80 ml) and extracted with ether ($3 \times 80 \mathrm{ml}$). The combined organic extracts were washed successively with 10% aq. NaOH , water and brine, and dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$. Concentration in vacuo afforded catalyst $4 \mathrm{~d}(3.2 \mathrm{~g}, 41 \%)$ as a slightly pink oil, $[a]_{D}^{20}+2.8$ (c 1.0, EtOH); $v_{\text {max }}$ (film)/cm ${ }^{-1} 3150 \mathrm{w}, 2957 \mathrm{~s}, 1677 \mathrm{~s}$ and 1594 m ; $\delta_{\mathrm{H}} 0.90\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7, \mathrm{CH}_{3}\right), 1.00\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7, \mathrm{CH}_{3}\right), 2.03(1 \mathrm{H}$, octet, J 6.7, M e e CH), 2.37 ($6 \mathrm{H}, \mathrm{s}, \mathrm{N} \mathrm{M} \mathrm{e} 2_{2}$), 2.45-2.55 (1 H , m, NCH), $3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.12\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.6, \mathrm{OCH}_{2}\right)$ and $6.85-$ 6.95 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{c}} 19.78$ (q), $21.00(\mathrm{q}), 28.19$ (d), 42.05 (q), 56.06 (d), 66.50 (t), 68.87 (q), 112.23, 113.49, 120.86 and 121.07 (d), 148.57 and 149.81 (s); m/z (EI) 237 (${ }^{+}, 14 \%$) and 194 (100) (Found: M^{+}, 237.1729. $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N} \mathrm{O}_{2}$ requires M , 237.1729).

(2S)-N-M ethyl-2-(0-methoxyphenoxymethyl)pyrrolidine 4e, route A

The above method was followed using: sodium hydride (12.0 g of 60% dispersion in oil, 0.30 mol$)$, DMF (440 ml), 2-methoxyphenol ($32 \mathrm{ml}, 36.1 \mathrm{~g}, 0.30 \mathrm{~mol}$) and (2 S)- N -methyl-2-chloromethylpyrrolidine hydrochloride ${ }^{17} 9 \mathrm{~b}$ ($11.84 \mathrm{~g}, 0.070$ mol). The product was distilled under reduced pressure (0.5 $\mathrm{mmH} \mathrm{g}, 130^{\circ} \mathrm{C}$) to give compound 4 e as a clear oil (13.4 g , $87 \%)$. A nalytical data are given in route B

(2S)-N-B enzyloxycarbonyl-2-methyIsulfonyloxypyrrolidine 14

M ethanesulfonyl chloride ($0.37 \mathrm{~g}, 0.25 \mathrm{ml}, 3.2 \mathrm{mmol}$) was added to a stirred solution of (S)-N-benzyloxycarbonylprolinol ${ }^{15} 12(0.5 \mathrm{~g}, 2.1 \mathrm{mmol})$ and triethylamine ($0.32 \mathrm{~g}, 3.2$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$, and the solution stirred overnight. The reaction was washed with 2 m aq. $\mathrm{HCl}(40 \mathrm{ml}), 5 \%$ aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(40 \mathrm{ml})$ and water (40 ml), then the organic phase was dried over $\mathrm{M} \mathrm{SSO}_{4}$ before filtering and evaporating solvent in vacuo. A brown oil was obtained which was purified by flash chromatography (hexane-EtOA c, 1:1). The desired product 14 ($0.51 \mathrm{~g}, 77 \%$) was obtained as a clear oil, $[a]_{0}^{26}-54.4$ (c 1.7, CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3030 \mathrm{w}, 2959 \mathrm{~m}, 1734 \mathrm{~m}, 1701 \mathrm{~s}, 1413 \mathrm{~s}$, 1357 s and $1175 \mathrm{~s} ; \delta_{\mathrm{H}} 1.9-2.1\left[4 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right], 2.8$ and $2.9(3 \mathrm{H}$, $\left.2 \times \mathrm{s}, \mathrm{CH}_{3} \mathrm{SO}_{2}\right), 3.4-3.5\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.1-4.4(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{O}+\mathrm{NCH}\right), 5.2\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $7.3-7.4\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; $\delta_{\mathrm{c}} 22.9$ and $23.7(\mathrm{t}), 27.7$ and $28.5(\mathrm{t}), 36.8(\mathrm{q}), 46.8$ and $47.1(\mathrm{t})$, 55.6 and 56.3 (d), 66.8 and 67.1 (t), 69.3 and 69.5 (t), 127.8, 128.0, 128.2 and 128.5 (d), 136.4 and 136.7 (s) and 154.9 (s); the multiple peaks in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N M R spectra were due to the presence of rotamers about the urethane amide bond; $\mathrm{m} / \mathrm{z}(\mathrm{Cl}$, $\left.\mathrm{NH}_{3}\right) 314\left(\mathrm{M} \mathrm{H}^{+}, 25 \%\right), 218(45), 145(85)$ and 84 (100) (Found: $\mathrm{M} \mathrm{H}^{+}$, 314.1062. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{M}, 314.1062$).

(2S)-N-B enzyloxycarbonyl-2-(o-methoxyphenoxymethyl)pyrrolidine 15

To a solution of potassium tert-butoxide ($4.10 \mathrm{~g}, 36.5 \mathrm{mmol}$) in dry tert-butyl alcohol (40 ml) was added a solution of 2methoxyphenol ($4.53 \mathrm{~g}, 36.5 \mathrm{mmol}$) in tert-butyl alcohol (40 ml) followed by a solution of (2S)-N-benzyloxycarbonyl-2methylsulfonyloxypyrrolidine 14 ($2.86 \mathrm{~g}, 9.12 \mathrm{mmol}$) in tertbutyl alcohol (40 ml). The reaction was heated to reflux overnight before concentration in vacuo and dilution with EtOAc $(100 \mathrm{ml})$. The solution was washed with 2 m aq. $\mathrm{HCl}(100 \mathrm{ml})$, water (100 ml) and brine (100 ml), and then dried over $\mathrm{M} \mathrm{gSO}_{4}$, filtered and concentrated in vacuo to give an orange oil. This was purified by flash chromatography (hexane-EtOA $c, 4: 1$) to give compound 15 ($2.22 \mathrm{~g}, 71 \%$) as a colourless oil, $[a]_{0}^{20}-40.0$ (c $1.0, \mathrm{CHCl}_{3}$); $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3063 \mathrm{~m}, 2953 \mathrm{~s}, 1697 \mathrm{~s}, 1505 \mathrm{~s}, 1454 \mathrm{~s}$,

1410 s and $1253 \mathrm{~s} ; \delta_{\mathrm{H}} 1.8-2.1\left[4 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right], 3.3-3.5(2 \mathrm{H}, \mathrm{m}$ $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.8\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.0-4.1(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.1-4.2(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 5.1\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.8-6.9\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)$ and 7.2-7.3 (5H, m, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right) ; \delta_{\mathrm{c}} 22.7$ and $23.7(\mathrm{t}), 28.0$ and 28.7 (t), 46.7 and 47.1 (t), 56.0 (q), 55.7 and 56.4 (d), 66.7 and 67.1 $(\mathrm{t}), 68.5$ and $69.0(\mathrm{t}), 113.4,113.5,120.1,127.8,128.1$ and 128.5 (d), 136.6, 136.9, 148.1 and 148.5 (s), 154.9 and 155.1 (s); m/z (CI, NH3 $) 342\left(\mathrm{M} \mathrm{H}^{+}, 90 \%\right), 208(70), 84$ (100) (Found: M^{+}, 342.1705. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{4}$ requires $\mathrm{M}, 342.1705$).

(2S)-N-M ethyl-2-(0-methoxyphenox ymethyl)pyrrolidine 4e, route B

$\mathrm{LiAlH}_{4}(0.02 \mathrm{~g}, 0.52 \mathrm{mmol})$ was added to a stirring solution of compound 15 ($52 \mathrm{mg}, 0.15 \mathrm{mmol}$) in dry THF (10 ml) at $0^{\circ} \mathrm{C}$ and the mixture was heated under reflux for 2 h . The reaction was cooled to room temperature and diluted with EtOAC (2 ml) followed by water (20 ml), acidified to pH 3 using 2 maq . HCl and washed with ether $(2 \times 20 \mathrm{ml})$. The aqueous layer was basified (pH 10) using 2 m aq. NaOH and extracted with EtOAc $(2 \times 20 \mathrm{ml})$, the EtOA c extracts were combined and dried over $\mathrm{M} \mathrm{SSO}_{4}$ prior to filtering and removing solvent in vacuo. Compound 4 e ($30 \mathrm{mg}, 90 \%$) was obtained as a colourless oil, $[a]_{0}^{26}$ -38.4 (c 1.1, CHCl_{3}); $v_{\text {max }}\left(\right.$ film)/cm ${ }^{-1}$ 2938s, 2779s, 1592 s and $1505 \mathrm{~s} ; \delta_{\mathrm{H}} 1.7-1.9\left[3 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right], 2.1-2.2\left[1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right]$, 2.4-2.5 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}$), $2.6\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~N}\right), 3.0(1 \mathrm{H}$, pseudo quintet, J 6.6, NCH), 3.3-3.4 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}$), $3.9(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} \mathrm{O}$), 4.0 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.6,9.8, \mathrm{CH}_{2} \mathrm{O}$), 4.2 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.7,9.7$ $\mathrm{CH}_{2} \mathrm{O}$) and 6.9-6.95 (4H, m, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right) ; \delta_{\mathrm{c}} 22.6(\mathrm{t}), 28.6(\mathrm{t})$, 41.1 (q), 55.9 (q), 57.2 (t), 64.5 (d), 71.1 (t), 112.0, 113.8, 120.9 and 121.5 (d), 148.3 and 149.6 (s); m/z (EI) 221 ($\mathrm{M}^{+}, 3 \%$) and 84 (100) [Found: ($\mathrm{CI}, \mathrm{NH}_{3}$) M H ${ }^{+}$, 222.1494. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{2}$ requires M , 222.1495].

G eneral procedure for the asymmetric alkylation of imines using organolithium reagents

A solution of the appropriate organolithium reagent (BuLi, M eLi or PhLi) (3.0 mmol) was added to a stirred solution of imine $16 \mathrm{a}, \mathrm{b}(2.0 \mathrm{mmol})$ and chiral ligand $4 \mathrm{~d}, \mathrm{e}(0.5$ to 4.0 mmol$)$ in toluene (70 ml) at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The solution was stirred at this temperature for 3 h and subsequently at $-50^{\circ} \mathrm{C}$ for 3 h , before quenching with water (20 ml). The reaction mixture was washed with 5% aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ and the aqueous layer back extracted with EtOAc. The combined organic extracts were again washed with water and brine before being dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and evaporated in vacuo to leave an orange residue which was purified by flash chromatography to give amines 17a-e.

G eneral procedure for the preparation of ureas 18a-e

To a solution of amine 17a-e (20-50 mg) in $\mathrm{CDCl}_{3}(0.5 \mathrm{ml})$ was added (S)-1-phenylethyl isocyanate ($15 \mu \mathrm{l}, 18 \mathrm{mg}, 0.23 \mathrm{mmol}$). The resulting solution was allowed to stand at room temperature for 24 h to enable the reaction to reach completion, before analysis of ureas $\mathbf{1 8 a - e}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy and HPLC without purification. If unreacted amine was detected by ${ }^{1} \mathrm{H}$ $N M R$, then a further batch of isocyanate was added and the solution again allowed to stand for 24 h before analysis. No evidence of any kinetic resolution was observed during this derivatisation, and all of the amine 17a-e was consumed (as judged by ${ }^{1} \mathrm{H}$ NMR) before any analysis of the enantiomeric excess was undertaken.

1-P henylamino-1-phenylethane 17a ${ }^{18}$

The general procedure was followed using ligand $\mathbf{4 e}$, and the product was purified by flash chromatography (petrol-Et2 O_{2}, 5:1) to give amine 17a in 96% yield, $[a]_{0}^{24}+0.80$ (c 1.0, EtOH) $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3409 \mathrm{~m}, 3082 \mathrm{~m}$, 2968s, 1600 s , 1505 s and 1318 s ; $\delta_{\mathrm{H}} 1.5\left(3 \mathrm{H}, \mathrm{d}, 6.7, \mathrm{CH}_{3}\right), 4.0-4.2(1 \mathrm{H}, \mathrm{br} 5, \mathrm{NH}), 4.5(1 \mathrm{H}, \mathrm{q}$, J 6.7, CHCH_{3}), $6.5\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.6, \mathrm{NC}_{6} \mathrm{H}_{5}\right.$), $6.6(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3$, $\left.\mathrm{NC}_{6} \mathrm{H}_{5}\right), 7.1\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.9, \mathrm{NC}_{6} \mathrm{H}_{5}\right)$ and $7.2-7.5\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. The corresponding urea 18a was prepared following the general
procedure, $\delta_{\mathrm{H}} 1.3\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9, \mathrm{CH}_{3}\right), 1.4\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.2, \mathrm{CH}_{3}\right)$, 4.2 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.4, \mathrm{NH}$), $5.1\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0, \mathrm{CHCH}_{3}\right), 6.1(1 \mathrm{H}$, $\left.2 \times \mathrm{q}, 7.1, \mathrm{CHCH}_{3}\right), 6.8\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NC}_{6} \mathrm{H}_{5}\right)$ and 7.1-7.4 (13H, m, $\mathrm{C}_{6} \mathrm{H}_{5}$); enantiomeric excess 12%; chiral HPLC, hexane-IPA, 3:2, $3.03 \mathrm{~min}(17 \%), 4.05 \mathrm{~min}(22 \%), 12.8 \%$ ee; absolute configuration (S).

1-Phenylamino-1-phenylpentane $17 b^{10}$

The general procedure was followed using ligand $4 \mathbf{e}$, and the product was purified by flash chromatography (petrol-Et20, 20:1) to give amine 17b in 44% yield, $[a]_{0}^{23}+0.90$ (c 1.0, CHCl_{3}); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3412 \mathrm{~m}, 3051 \mathrm{~m}, 2954 \mathrm{~s}$, 1600 s , 1502s and 1317s; $\delta_{\mathrm{H}} 0.75\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{CH}_{3}\right), 1.0-1.3\left[4 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right], 1.5-1.7(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2}$), 3.8-4.0 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$), $4.15(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8, \mathrm{CH}), 6.4$ ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.6, \mathrm{NC}_{6} \mathrm{H}_{5}$), $6.5\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{NC}_{6} \mathrm{H}_{5}\right.$) , $7.0(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 7.9, $\mathrm{NC}_{6} \mathrm{H}_{5}$) and 7.1-7.3 ($5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}$). The corresponding urea 18 b was prepared following the general procedure and analysed by chiral HPLC, hexane-IPA, 9:1, $5.64 \mathrm{~min}(46 \%), 6.43$ $\min (41 \%), 5.7 \%$ ee

3-[(p-M ethoxyphenyl)amino]-1-phenylbut-1-ene 17c ${ }^{10}$

The general procedure was followed using ligand $\mathbf{4 d}$ or $\mathbf{4 e}$, and the product was purified by flash chromatography (petrol-Et $\mathrm{t}_{2} \mathrm{O}$, $5: 1$), giving amine 17 c as a yellow oil in 42% yield, $[a]_{0}^{25}-29.5$ (c 1.0, CHCl_{3}) using ligand $4 \mathrm{e} ;[a]_{0}^{20}+20.5$ ($\mathrm{c} 2.6, \mathrm{CHCl}_{3}$) using ligand 4d; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3394 \mathrm{~m}, 3055 \mathrm{~m}$, 2964s, 1616 m , 1511 s and $1448 \mathrm{~s} ; \delta_{\mathrm{H}} 1.45\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6, \mathrm{CH}_{3}\right), 3.2-3.6(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$, $3.8\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.1$ (1 H , quintet, J $6.2, \mathrm{CH}$), 6.25 (1 H , dd, J 5.9, 15.9, CH =CH Ph), 6.6 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.5, \mathrm{CH}=\mathrm{CH}$ Ph), 6.65 (2 H , d, J 8.9, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}$), $6.8\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right.$) and 7.2-7.4 $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. The corresponding urea 18 c was prepared following the general procedure, $\delta_{\mathrm{H}} 1.2\left(3 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J} 6.9, \mathrm{CH}_{3}\right)$, $1.35\left(3 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J} 6.9, \mathrm{CH}_{3}\right), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.25(1 \mathrm{H}, \mathrm{d}$, J $7.8, \mathrm{NH}), 5.0\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 5.5(1 \mathrm{H}$, quintet, J 6.7, $\mathrm{CH} \mathrm{CH}=\mathrm{CH}), 6.2(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.5,15.9, \mathrm{CH}=\mathrm{CH}$ Ph), $6.5(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 15.9, $\mathrm{CH}=\mathrm{CH}$ Ph $), 6.9\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right), 7.1(2 \mathrm{H}, \mathrm{d}$, J $8.8, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}$) and 7.15-7.4 ($10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}$). Enantiomeric excess 12% in favour of the (R)-enantiomer using ligand $4 d$ and 19% in favour of the (S)-enantiomer using ligand 4 e . Chiral HPLC, hexane-IPA, $1: 1,4.33 \mathrm{~min}(58 \%)$, $13.45 \mathrm{~min}(35 \%)$, 25% ee using ligand $\mathbf{4 e}$.

3-[(p-M ethoxyphenyl)-1-phenylhept-1-ene 17d ${ }^{10}$

The general procedure was followed using ligand $\mathbf{4 d}$ or $\mathbf{4 e}$, and the product was purified by flash chromatography (petrol- $\mathrm{Et}_{2} \mathrm{O}$, 6:1) to give amine 17d in 40% yield, $[a]_{\mathrm{D}}^{24}-1.8\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$ using ligand $4 \mathrm{e},[a]_{0}^{20} 7.2$ (c $1.0, \mathrm{CHCl}_{3}$) using ligand 4 d ; $v_{\text {max }}$ (film)/ $/ \mathrm{cm}^{-1} 3398 \mathrm{~m}, 3056 \mathrm{~s}, 2928 \mathrm{~s}, 1617 \mathrm{~m}, 1517 \mathrm{~s}$ and 1463 s ; $\delta_{\mathrm{H}} 0.95\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8, \mathrm{CH}_{3}\right), 1.3-1.6\left[4 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right], 1.6-1.8(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 3.3-3.4(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.9(1 \mathrm{H}, \mathrm{q}, \mathrm{J}$ 6.5, NCH), 6.15 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.5,15.9, \mathrm{CH}=\mathrm{CH}$ Ph), $6.55(1 \mathrm{H}, \mathrm{d}$, J 15.9, $\mathrm{PhCH}=\mathrm{CH}$), $6.6\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right), 6.8(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.9, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)$ and $7.2-7.5\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. The corresponding urea 18d was prepared following the general procedure, and analysed by chiral HPLC, hexane-IPA, 2:3, $4.09 \mathrm{~min}(49 \%)$, $6.22 \mathrm{~min}(44 \%), 5.4 \%$ ee Absolute configuration was not assigned, however the configuration using ligand 4 e is the opposite to that obtained using catalyst 4a.

3-[(p-M ethoxyphenyl)amino]-1,3diphenylprop-1-ene 17e ${ }^{10}$

The general procedure was followed, and the product was purified by flash chromatography (petrol-EtOAc, 6:1) to yield amine 17 e in 51% yield, $[a]_{\mathrm{D}}^{18}-3.7$ ($\mathrm{c} 1.0, \mathrm{CHCl}_{3}$); $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$)/ $\mathrm{cm}^{-1} 3399 \mathrm{~m}, 3025 \mathrm{~s}, 2830 \mathrm{~s}, 1598 \mathrm{~s}$ and $1510 \mathrm{~m} ; \delta_{\mathrm{H}} 3.75(3 \mathrm{H}, \mathrm{s}$, OCH_{3}), 3.8-4.0 ($1 \mathrm{H}, \mathrm{br}$ s, NH), $5.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \mathrm{NCH}), 6.4$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.2,15.8, \mathrm{CH}=\mathrm{CHPh}$), 6.6 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH} \mathrm{Ph}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right), 6.85\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)$ and 7.2-7.5 (10H, $\mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}$). The corresponding urea 18e was prepared following the general procedure, $\delta_{\mathrm{H}} 1.3\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9, \mathrm{CH}_{3}\right), 3.8(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.4(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8, \mathrm{NH}), 5.1(1 \mathrm{H}$, quintet, J 7.5 ,
CHCH_{3}), 6.3 ($1 \mathrm{H}, \mathrm{dd}$, J 8.5, 15.7, $\mathrm{CH}=\mathrm{CH}$ Ph), $6.5(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.6, CH), 6.7 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.9, \mathrm{CH}=\mathrm{CH}$ Ph $), 6.8-7.0(4 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}$) and 7.2-7.5 (15H, m, $\mathrm{C}_{6} \mathrm{H}_{5}$); enantiomeric excess 11%; chiral HPLC, hexane-IPA, $3: 2,6.52 \mathrm{~min}(45 \%), 10.32$ $\min (35 \%), 12.5 \%$ ee

Acknowledgements

The authors thank the EPSRC and Smithkline Beechams for a CASE award studentship to C. A. J., and the EU for a studentship to M.M.M ass spectra were recorded by the staff of the EPSRC service at the U niversity of Wales, Swansea.

References

1 For reviews see: M. N orth, Synlett, 1993, 807; M. N orth, in Comprehensive Organic F unctional Group Transformations, ed. A. R . K atrizky, O. M eth-Cohn, C. W. Rees and G. Pattenden, Pergamon Oxford, 1995, vol. 3, p. 628.
2 For recent examples and reviews see: C. A . de Parrodi, E. Juaristi L. Quintero-Cortes and P. A mador, Tetrahedron: A symmetry, 1996 7, 1915; K . R . K . Prasad and N. N. Joshi, Tetrahedron: A symmetry, 1996, 7, 1957; P. G. Cozzi, A. Papa and A. Umani-Ronchi, Tetrahedron L ett., 1996, 37, 4613; K . Soai, T. Shibata, H. M orioka and K. Choji, N ature, 1995, 378, 767; K. Soai and S. N iwa, Chem. Rev., 1992, 92, 833; R. N oyori and M. K itamura, A ngew. Chem., Int. Ed. Engl., 1991, 30, 49.
3 For reviews see: M . N orth, C ontemp. Org. Synth., 1996, 3, 323; D. J. Berrisford, A ngew. C hem., Int. Ed. Engl., 1995, 34, 178; M . N orth Contemp. Org. Synth., 1995, 2, 269; A. Johansson, C ontemp. Org Synth., 1995, 2, 393; M . N orth, C ontemp. Org. Synth., 1994, 1, 475.
4 For recent examples see: G. Alvaro and D. Savoia, Tetrahedron: A symmetry, 1996, 7, 2083; P. M erino, S. A noro, E. Castillo, F. M erchan and T. Tejero, Tetrahedron: A symmetry 1996, 7, 1887; L. Y an, Y. Guishu, J. Y aozhong and Y. D engkui, Synth. Commun. 1995, 25 1551; K. Higashiyama, H. Inoue, T. Yamauchi and H. Takahashi, J. C hem. Soc., Perkin Trans. 1, 1995, 111; L. Chen R. V. Trilles and J. W. Tilley, Tetrahedron Lett., 1995, 36, 8715
L. Cipolla, L. Lay, F. Nicotra, C. Pangrazio and L. Panza, Tetrahedron, 1995, 51, 4679; T. Basile, A. Bocoum, D. Savoia and A . U manironchi, J. Org. C hem., 1994, 59, 7766.
5 M. S. Iyer, K. M. Gigstad, N. D. Namdev and M. Lipton, J. Am. Chem. Soc., 1996, 118, 4910.
6 S. E. Denmark, N. Nakajima and O. J.-C. Nicaise, J. Am. Chem. Soc., 1994, 116, 8797.
7 S. Itsuno, M. Sasaki, S. Kuroda and K. Ito, Tetrahedron: A symmetry, 1995, 6, 1507.
8 I. Inoue, M . Shindo, K . K oga and K. Tomioka, Tetrahedron, 1994, 50, 4429.
9 I. Inoue, M. Shindo, K. Koga, M. K anai and K. Tomioka, Tetrahedron: A symmetry, 1995, 6, 2527.
10 K. Tomioka, I. Inoue, M. Shindo and K . K oga, Tetrahedron Lett., 1990, 31, 6681; K. Tomioka, I. Inoue, M. Shindo and K. Koga, Tetrahedron L ett., 1991, 32, 3095; I. Inoue, M . Shindo, K . K oga and K . Tomioka, Tetrahedron: A symmetry, 1993, 41603.
11 S. Itsuno, H. Yamaka, C. Hachisuka and K. Ito, J. Chem. Soc., Perkin Trans. 1, 1991, 1341; K . Soai, T. H atanaka and T. M iyazawa, J. C hem. Soc., C hem. C ommun., 1992, 1097.

12 Y. Ukaji, T. H atanaka, A. A hmed and K. Inomata, Chem. Lett., 1993, 1313.
13 A preliminary account of some of this work has been reported: C. A . Jones, I. G. Jones, M . N orth and C. R . Pool, Tetrahedron L ett., 1995, 36, 7885.
14 M. K itamoto, K. K ameo, S. Terashima and S-I. Yamada, Chem. Pharm Bull., 1977, 25, 1273; K. Tomioka, Y. Shinmi, K. Shiina, M . N akajima and K . K oga, C hem. P harm. Bull., 1990, 38, 2133.
15 A . A biko and S. M asamune, Tetrahedron L ett., 1992, 33, 5517.
16 W. C. Still, M. K ahn and A. M itra, J. Org. Chem., 1978, 43, 2923.
17 T. H ayashi, M . K onishi, M . F ukushima, K . K anehira, T. Hioki and M . K umada, J. Org. C hem., 1983, 48, 2195.
18 M . N akagawa, T. K awate, T. K akikawa, H. Yamada, T. M atsui and T. H ino, Tetrahedron, 1993, 49, 1739.

Paper 7/02028G
R eceived 24th M arch 1997
A ccepted 11th J une 1997

[^0]: ${ }^{\text {a }}$ A bsolute configuration unknown, but shown to be the same as that obtained using catalyst 4 a . ${ }^{\mathrm{b}} \mathrm{A}$ bsolute configuration unknown, but shown to be
 not contaminated with compound 11.

